You’ve already seen what goes wrong when we try to use just let to define
a recursive function. Try harder. Hint: Substitute more. And then some
more. And more!

Obtaining recursion from just functions is an amazing idea, and I use the term
literally. It’s written up well by Daniel P. Friedman and Matthias Felleisen in their
book, The Little Schemer. Read about it in their sample chapter online,

Exercise

Does the above solution use state anywhere? Implicitly?

10 Objects

When a language admits functions as values, it provides developers the most natural
way to represent a unit of computation. Suppose a developer wants to parameterize
some function £. Any language lets £ be parameterized by passive data, such as num-
bers and strings. But it is often attractive to parameterize it over active data: a datum
that can compute an answer, perhaps in response to some information. Furthermore,
the function passed to £ can—assuming lexically-scoped functions—refer to data from
the caller without those data having to be revealed to £, thus providing a foundation
for security and privacy. Thus, lexically-scoped functions are central to the design of
many secure programming techniques.

While a function is a splendid thing, it suffers from excessive terseness. Sometimes
we might want multiple functions to all close over to the same shared data; the sharing
especially matters if some of the functions mutate it and expect the others to see the
result of those mutations. In such cases, it becomes unwieldly to send just a single
function as a parameter; it is more useful to send a group of functions. The recipient
then needs a way to choose between the different functions in the group. This grouping
of functions, and the means to select one from the group, is the essence of an object.
We are therefore perfectly placed to study objects having covered functions (section 7)
and mutation (section 8)—and, it will emerge, recursion (section 9).

Let’s add this notion of objects to our language. Then we’ll flesh it out and grow
it, and explore the many dimensions in the design space of objects. We’ll first show
how to add objects to the core language, but because we’ll want to prototype many
different ideas quickly, we’ll soon shift to a desguaring-based strategy. Which one you
use depends on whether you think understanding them is critical to understanding the
essence of your language. One way to measure this is how complex your desguaring
strategy becomes, and whether by adding some key core language enhancements, you
can greatly reduce the complexity of desugaring.

10.1 Objects Without Inheritance

The simplest notion of an object—pretty much the only thing everyone who talks about
objects agrees about—is that an object is

¢ avalue, that

67

I cannot hope to do
justice to the
enormous space of
object systems.
Please read
Object-Oriented
Programming
Languages :
Application and
Interpretation by
Eric Tanter, which
goes into more
detail and covers
topics ignored here.

http://www.ccs.neu.edu/home/matthias/BTLS/sample.pdf
http://users.dcc.uchile.cl/~etanter/ooplai/
http://users.dcc.uchile.cl/~etanter/ooplai/
http://users.dcc.uchile.cl/~etanter/ooplai/
http://users.dcc.uchile.cl/~etanter/ooplai/
http://users.dcc.uchile.cl/~etanter/ooplai/

* maps names to

« stuff: either other values or “methods”.
From a minimalist perspective, methods seem to be just functions, and since we already
have those in the language, we can put aside this distinction.
10.1.1 Objects in the Core

Therefore, starting from the language with first-class functions, let’s define this very
simple notion of objects by adding it to the core language. We clearly have to extend
our notion of values:

(define-type Value

[numV (n : number)]
[closV (arg : symbol) (body : ExprC) (env : Env)]
[objV (ns : (listof symbol)) (vs : (listof Value))])

We’ll extend the expression grammar to support literal object construction expressions:

[objC (ns : (listof symbol)) (es : (listof ExprC))]

Evaluating such an object expression is easy: we just evaluate each of its expression
positions:

[objC (ns es) (objV ns (map (lambda (e)
(interp e env))

es))]

Unfortunately, we can’t actually use an object, because we have no way of obtaining
its content. For that reason, we could add an operation to extract members:

[msgC (o : ExprC) (n : symbol)]

whose behavior is intuitive:
[msgC (o n) (lookup-msg n (interp o env))]
Exercise

Implement

; lookup-msg : symbol * Value -> Value

where the second argument is expected to be a objV.

In principle, msgC can be used to obtain any kind of member but for simplicity, we
need only assume that we have functions. To use them, we must apply them to values.
This is cumbersome to write in the concrete syntax, so let’s assume desugaring has
taken care of it for us: the concrete syntax for message invocation includes both the
name of the message to fetch and its argument expression,

68

We’re about to find
out that “methods”
are awfully close to
functions but differ
in important ways
in how they’re
called and/or what’s
bound in them.

Observe that this is
already a design
decision. In some
languages, like
JavaScript, a
developer can write
literal objects: a
notion so popular
that a subset of the
syntax for it in
JavaScript has
become a Web
standard, JSON. In
other languages,
like Java, objects
can only be created
by invoking a
constructor on a
class. We can
simulate both by
assuming that to
model the latter
kind of language,
we must write
object literals only
in special positions
following a stylized
convention, as we
do when desugaring
below.

[msgS (o : ExprS) (n : symbol) (a : ExprS)]
and this desguars into msgC composed with application:
[msgS (o n a) (appC (msgC (desugar o) n) (desugar a))]

With this we have a full first language with objects. For instance, here is an object
definition and invocation:

(letS ’o (objsS (list ’addl ’subl)
(list (lamS ’x (plusS (idS ’x) (numS 1)))
(lamS ’x (plusS (idS ’x) (numS -1)))))
(msgS (idS ’o0) ’addl (numS 3)))

and this evaluates to (numV 4).

10.1.2 Objects by Desugaring

While defining objects in the core language may be worthwhile, it’s an unwieldy way
to go about studying them. Instead, we’ll use Racket to represent objects, sticking to
the parts of the language we already know how to implement in our interpreter. That
is, we’ll assume that we are looking at the output of desugaring. (For this reason, we’ll
also stick to stylized code, potentially writing unnecessary expressions on the grounds
that this is what a simple program generator would produce.)

Alert: All the code that follows will be in #lang plai, not in the typed language.

Exercise

Why #lang plai? What problems do you encounter when you try to
type the following code? Are some of them amenable to easy fixes, such
as introducing a new datatype and applying it consistently? How about if
we make simplifications for the purposes of modeling, such as assuming
methods have only one argument? Or are some of them less tractable?

10.1.3 Objects as Named Collections

Let’s begin by reproducing the object language we had above. An object is just a value
that dispatches on a given name. For simplicity, we’ll use lambda to represent the

object and case to implement the dispatching. Observe that basic
objects are a
(define o-1 generalization of
lambda to have
(lambda (m) multiple
(case m “entry-points”.
[(addl) (lambda (x) (+ x 1))] Conversely, a
[(subl) (lambda (x) (- x 1))1))) lambda is an object

with just one
entry-point, so it
doesn’t need a
“method name” to
(test ((o-1 ’addl) 5) 6) ;; the test succeeds disambiguate.

This is the same object we defined earlier, and we use its method in the same way:

69

Of course, writing method invocations with these nested function calls is unwieldy
(and is about to become even more so), so we’d be best off equipping ourselves with
a convenient syntax for invoking methods—the same one we saw earlier (msgS), but

here we can simply define it as a function: We’ve taken
advantage of
(define (msg om . a) Racket’s
appl om a variable-arity
(PPy ())) syntax: . a says

“bind all the
remaining—zero or
more—arguments
to a list named a”.
apply “splices” in

This enables us to rewrite our test:

(test (msg o-1 ’addl 5) 6)

Do Now! such lists of
. . . . arguments to call
Something very important changed when we switched to the desguaring fuictions_

strategy. Do you see what it is?

Recall the syntax definition we had earlier:
[msgC (o : ExprC) (n : symbol)]

The “name” position of a message was very explicitly a symbol. That is, the developer
had to write the literal name of the symbol there. In our desugared version, the name
position is just an expression that must evaluate to a symbol; for instance, one could
have written

(test ((o-1 (string->symbol "add1")) 5) 6) ;; this also succeeds

This is a general problem with desugaring: the target language may allow expressions
that have no counterpart in the source, and hence cannot be mapped back to it. For-
tunately we don’t often need to perform this inverse mapping, though it does arise in
some debugging and program comprehension tools. More subtly, however, we must
ensure that the target language does not produce values that have no corresponding
equivalent in the source.

Now that we have basic objects, let’s start adding the kinds of features we’ve come
to expect from most object systems.

10.1.4 Constructors

A constructor is simply a function that is invoked at object construction time. We
currently lack such a function. by turning an object from a literal into a function that
takes constructor parameters, we achieve this effect:

(define (o-constr-1 x)
(lambda (m)
(case m
[(addX) (lambda (y) (+ x y))1)))

(test (msg (o-constr-1 5) ’addX 3) 8)
(test (msg (o-constr-1 2) ’addX 3) 5)

70

In the first example, we pass 5 as the constructor’s argument, so adding 3 yields 8. The
second is similar, and shows that the two invocations of the constructors don’t interfere
with one another.

10.1.5 State

Many people believe that objects primarily exist to encapsulate state. We certainly
haven’t lost that ability. If we desugar to a language with variables (we could equiva-
lently use boxes, in return for a slight desugaring overhead), we can easily have multi-
ple methods mutate common state, such as a constructor argument:

(define (o-state-1 count)
(lambda (m)
(case m
[(inc) (lambda () (set! count (+ count 1)))]
[(dec) (lambda () (set! count (- count 1)))]
[(get) (lambda () count)])))

For instance, we can test a sequence of operations:

(test (let ([o (o-state-1 5)1)
(begin (msg o ’inc)
(msg o ’dec)
(msg o ’get)))
5)

and also notice that mutating one object doesn’t affect another:

(test (let ([ol (o-state-1 3)]
[02 (o-state-1 3)1)
(begin (msg ol ’inc)
(msg ol ’inc)
(+ (msg ol ’get)
(msg 02 ’get))))
(+ 5 3))

10.1.6 Private Members

Another common object language feature is private members: ones that are visible only
inside the object, not outside it. These may seem like an additional feature we need
to implement, but we already have the necessary mechanism in the form of locally-
scoped, lexically-bound variables:

(define (o-state-2 init)
(let ([count init])
(lambda (m)
(case m

71

Alan Kay, who won
a Turing Award for
inventing Smalltalk
and modern object
technology,
disagrees. In The
Early History of
Smalltalk, he says,
“[t]he small scale
[motivation for
OOP] was to find a
more flexible
version of
assignment, and
then to try to
eliminate it
altogether”. He
adds, “It is
unfortunate that
much of what is
called
‘object-oriented
programming’
today is simply old
style programming
with fancier
constructs. Many
programs are
loaded with
‘assignment-style’
operations now
done by more
expensive attached
procedures.”

Except that, in Java,
instances of other
classes of the same
type are privy to
“private” members.
Otherwise, you
would simply never
be able to
implement an
Abstract Data Type.

http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html
http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html
http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html

[(inc) (lambda () (set! count (+ count 1)))]
[(dec) (lambda () (set! count (- count 1)))]
[(get) (lambda () count)]))))

The desugaring above provides no means for accessing count, and lexical scoping
ensures that it remains hidden to the world.

10.1.7 Static Members

Another feature often valuable to users of objects is sfatic members: those that are

common to all instances of the “same” type of object. This, however, is merely a We use quotes

lexically-scoped identifier (making it private) that lives outside the constructor (making because there are

it common to all uses of the constructor): many notions of
sameness for

objects. And then

(define o-static-1 some.

(let ([counter 0])
(lambda (amount)
(begin
(set! counter (+ 1 counter))
(lambda (m)
(case m
[(inc) (lambda (n) (set! amount (+ amount n)))]
[(dec) (lambda (n) (set! amount (- amount n)))]
[(get) (lambda () amount)]
[(count) (lambda () counter)]))))))

We’ve written the counter increment where the “constructor” for this object would go,
though it could just as well be manipulated inside the methods.

To test it, we should make multiple objects and ensure they each affect the global
count:

(test (let ([o (o-static-1 1000)1)
(msg o ’count))
1)

(test (let ([o (o-static-1 0)1)
(msg o ’count))
2)

10.1.8 Objects with Self-Reference

Until now, our objects have simply been packages of named functions: functions with
multiple named entry-points, if you will. We’ve seen that many of the features con-
sidered important in object systems are actually simple patterns over functions and
scope, and have indeed been used—without names assigned to them—for decades by
programmers armed with lambda.

72

One characteristic that actually distinguishes object systems is that each object is
automatically equipped with a reference to the same object, often called self or this.
Can we implement this easily?

Self-Reference Using Mutation

Yes, we can, because we have seen just this very pattern when we implemented recur-
sion; we’ll just generalize it now to refer not just to the same box or function but to the
same object.

(define o-self!
(let ([self ’dummy])

(begin
(set! self
(lambda (m)
(case m
[(first) (lambda (x) (msg self ’second (+ x 1)))]
[(second) (lambda (x) (+ x 1))1)))
self)))

Observe that this is precisely the recursion pattern (section 9.2), adapted slightly. We’ve
tested it having first send a method to its own second. Sure enough, this produces
the expected answer:

(test (msg o-self! ’first 5) 7)

Self-Reference Without Mutation

If you studied how to implement recursion without mutation, you’ll notice that the
same solution applies here, too. Observe:

(define o-self-no!
(lambda (m)
(case m
[(first) (lambda (self x) (msg/self self ’second (+ x 1)))]
[(second) (lambda (self x) (+ x 1))1)))

Each method now takes self as an argument. That means method invocation must be
modified to follow this new pattern:

(define (msg/self om . a)

(apply (o m) o a))

That is, when invoking a method on o, we must pass o as a parameter to the method.
Obviously, this approach is dangerous because we can potentially pass a different object
as the “self”. Exposing this to the developer is therefore probably a bad idea; if this
implementation technique is used, it should only be done in desugaring.

73

I prefer this slightly
dry way of putting
it to the
anthropomorphic
“knows about
itself” terminology
often adopted by
object advocates.
Indeed, note that we
have gotten this far
into object system
properties without
ever needing to
resort to
anthropomorphism.

Nevertheless,
Python exposes just
this in its surface
syntax. While this
tribute to the
Y-combinator is
touching, perhaps
the resultant
brittleness was
unnecessary.

10.1.9 Dynamic Dispatch

Finally, we should make sure our objects can handle a characteristic attribute of ob-
ject systems, which is the ability to invoke a method without the caller having to
know or decide which object will handle the invocation. Suppose we have a binary
tree data structure, where a tree consists of either empty nodes or leaves that hold
a value. In traditional functions, we are forced to implement the equivalent some
form of conditional—either a cond or a type-case or pattern-match or other moral
equivalent—that exhaustively lists and selects between the different kinds of trees. If
the definition of a tree grows to include new kinds of trees, each of these code fragments
must be modified. Dynamic dispatch solves this problem by making that conditional
branch disappear from the user’s program and instead be handled by the method se-
lection code built into the language. The key feature that this provides is an extensible
conditional. This is one dimension of the extensibility that objects provide.
Let’s now defined our two kinds of tree objects:

(define (mt)
(let ([self ’dummy])

(begin
(set! self
(lambda (m)
(case m
[(add) (lambda () 0)1)))
self)))

(define (node v 1 1)
(let ([self ’dummy])

(begin
(set! self
(lambda (m)
(case m
[(add) (lambda () (+ v

(msg 1 ’add)
(msg r ’add)))1)))

self)))

With these, we can make a concrete tree:

(define a-tree
(node 10
(node 5 (mt) (mt))
(node 15 (node 6 (mt) (mt)) (mt))))

And finally, test it:

(test (msg a-tree ’add) (+ 10 5 15 6))

74

This
property—which
appears to make
systems more
black-box
extensible because
one part of the
system can grow
without the other
part needing to be
modified to
accommodate those
changes—is often
hailed as a key
benefit of
object-orientation.
While this is indeed
an advantage
objects have over
functions, there is a
dual advantage that
functions have over
objects, and indeed
many object
programmers end
up contorting their
code—using the
Visitor pattern—to
make it look more
like a
function-based
organization. Read
Synthesizing
Object-Oriented
and Functional
Design to Promote
Re-Use for a
running example
that will lay out the
problem in its full
glory. Try to solve
it in your favorite
language, and see
the Racket solution.

http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.utah.edu/plt/publications/icfp98-ff/paper.shtml

Observe that both in the test case and in the add method of node, there is a reference
to ?add without checking whether the recipient is a mt or node. Instead, the run-time
system extracts the recipient’s add method and invokes it. This missing conditional in
the user’s program is the essence of dynamic dispatch.

10.2 Member Access Design Space

We already have two orthogonal dimensions when it comes to the treatment of member
names. One dimension is whether the name is provided statically or computed, and the

other is whether the set of names is fixed or variable:
Name is Static Name is Computed

Fixed Set of Members As in base Java. As in Java with reflection to compute the name.
Variable Set of MembersDifficult to envision (what use would it be?).Most scripting languages.
Only one case does not quite make sense: if we force the developer to specify the
member name in the source file explicitly, then no new members would be accessible
(and some accesses to previously-existing, but deleted, members would fail). All other
points in this design space have, however, been explored by languages.
The lower-right quadrant corresponds closely with languages that use hash-tables
to represent objects. Then the name is simply the index into the hash-table. Some lan-
guages carry this to an extreme and use the same representation even for numeric in-
dices, thereby (for instance) conflating objects with dictionaries and even arrays. Even
when the object only handles “member names”, this style of object creates significant
difficulty for type-checking [REF] and is hence not automatically desirable.
Therefore, in the rest of this section, we will stick with “traditional” objects that
have a fixed set of names and even static member name references (the top-left quad-
rant). Even then, we will find there is much, much more to study.

10.3 What (Goes In) Else?

Until now, our case statements have not had an else clause. One reason to do so
would be if we had a variable set of members in an object, though that is probably
better handled through a different representation than a conditional: a hash-table, for
instance, as we’ve discussed above. In contrast, if an object’s set of members is fixed,
desugaring to a conditional works well for the purpose of illustration (because it em-
phasizes the fixed nature of the set of member names, which a hash table leaves open to
interpretation—and also error). There is, however, another reason for an else clause,
which is to “chain” control to another, parent, object. This is called inheritance.

Let’s return to our model of desugared objects above. To implement inheritance,
the object must be given “something” to which it can delegate method invocations that
it does not recognize. A great deal will depend on what that “something” is.

One answer could be that it is simply another object.

(case m

[else (parent-object m)])

75

Due to our representation of objects, this application effectively searches for the method
in the parent object (and, presumably, recursively in its parents). If a method matching
the name is found, it returns through this chain to the original call in msg that sought the
method. If none is found, the final object presumably signals a “message not found”
eITor.

Exercise

Observe that the application (parent-object m) is like “half a msg”,
just like an 1-value was “half a value lookup” [REF]. Is there any connec-
tion?

Let’s try this by extending our trees to implement another method, size. We’ll
write an “extension” (you may be tempted to say “sub-class”, but hold off for now!)
for each node and mt to implement the size method. We intend these to extend the
existing definitions of node and mt, so we’ll use the extension pattern described above.

10.3.1 Classes

Immediately we see a difficulty. Is this the constructor pattern?

(define (node/size parent-object v 1 r)

)

That suggests that the parent is at the “same level” as the object’s constructor fields.
That seems reasonable, in that once all these parameters are given, the object is “fully
defined”. However, we also still have

(define (node v 1 1)

)

Are we going to write all the parameters twice? (Whenever we write something twice,
we should worry that we may not do so consistently, thereby inducing subtle errors.)
Here’s an alternative: node/size can construct the instance of node that is its parent.
That is, node/size’s parent parameter is not the parent object but rather the parent’s
object maker.

(define (node/size parent-maker v 1 r)
(let ([parent-object (parent-maker v 1 r)]
[self ’dummy])

(begin
(set! self
(lambda (m)
(case m
[(size) (lambda () (+ 1
(msg 1 ’size)
(msg r ’size)))]
[else (parent-object m)])))
self)))

76

We’re not editing
the existing
definitions because
that is supposed to
be the whole point
of object
inheritance: to
reuse code in a
black-box fashion.
This also means
different parties,
who do not know
one another, can
each extend the
same base code. If
they had to edit the
base, first they have
to find out about
each other, and in
addition, one might
dislike the edits of
the other.
Inheritance is meant
to sidestep these
issues entirely.

(define (mt/size parent-maker)
(let ([parent-object (parent-maker)]
[self ’dummy])

(begin
(set! self
(lambda (m)
(case m
[(size) (lambda () 0)]
[else (parent-object m)])))
self)))

Then the object constructor must remember to pass the parent-object maker on every
invocation:

(define a-tree/size
(node/size node
10
(node/size node 5 (mt/size mt) (mt/size mt))
(node/size node 15
(node/size node 6 (mt/size mt) (mt/size mt))
(mt/size mt))))

Obviously, this is something we might simplify with appropriate syntactic sugar. We
can confirm that both the old and new tests still work:

(test (msg a-tree/size ’add) (+ 10 5 15 6))
(test (msg a-tree/size ’size) 4)

Exercise
Rewrite this block of code using self-application instead of mutation.

What we have done is capture the essence of a class. Each function parameterized
over a parent is...well, it’s a bit tricky, really. Let’s call it a blob for now. A blob
corresponds to what a Java programmer defines when they write a class:

class NodeSize extends Node { ... }

Do Now!
So why are we going out of the way to not call it a “class”?

When a developer invokes a Java class’s constructor, it in effect constructs objects
all the way up the inheritance chain (in practice, a compiler might optimize this to
require only one constructor invocation and one object allocation). These are private
copies of the objects corresponding to the parent classes (private, that is, up to the
presence of static members). There is, however, a question of how much of these
objects is visible. Java chooses that—unlike in our implementation above—only one

71

method of a given name (and signature) remains, no matter how many there might
have been on the inheritance chain, whereas every field remains in the result, and can
be accessed by casting. The latter makes some sense because each field presumably
has invariants governing it, so keeping them separate (and hence all present) is wise.
In contrast, it is easy to imagine an implementation that also makes all the methods
available, not only the ones lowest (i.e., most refined) in the inheritance hierarchy.
Many scripting languages take the latter approach.
Exercise

The code above is fundamentally broken. The self reference is to the
same syntactic object, whereas it needs to refer to the most-refined object:
this is known as open recursion. Modify the object representations so that
self always refers to the most refined version of the object. Hint: You
will find the self-application method (section 10.1.8.2) of recursion handy.

10.3.2 Prototypes

In our description above, we’ve supplied each class with a description of its parent
class. Object construction then makes instances of each as it goes up the inheritance
chain. There is another way to think of the parent: not as a class to be instantiated
but, instead, directly as an object itself. Then all children with the same parent would
observe the very same object, which means changes to it from one child object would
be visible to another child. The shared parent object is known as a prototype.

Some language designers have argued that prototypes are more primitive than classes
in that, with other basic mechanisms such as functions, one can recover classes from
prototypes—but not the other way around. That is essentially what we have done
above: each “class” function contains inside it an object description, so a class is an
object-returning-function. Had we exposed these are two different operations and cho-
sen to inherit directly an object, we would have something akin to prototypes.

Exercise

Modify the inheritance pattern above to implement a Self-like, prototype-
based language, instead of a class-based language. Because classes pro-
vide each object with distinct copies of their parent objects, a prototype-
language might provide a clone operation to simplify creation of the oper-
ation that simulates classes atop prototypes.

10.3.3 Multiple Inheritance

Now you might ask, why is there only one fall-through option? It’s easy to generalize
this to there being many, which leads naturally to multiple inheritance. In effect, we
have multiple objects to which we can chain the lookup, which of course raises the
question of what order in which we should do so. It would be bad enough if the
ascendants were arranged in a tree, because even a tree does not have a canonical order
of traversal: take just breadth-first and depth-first traversal, for instance (each of which
has compelling uses). Worse, suppose a blob A extends B and C; but now suppose B
and C each extend D. Now we have to confront this question: will there be one or two

78

This demonstrates
the other form of
extensibility we get
from traditional
objects: extensible
recursion.

The archetypal
prototype-based
language is Self.
Though you may
have read that
languages like
JavaScript are
“based on” Self,
there is value to
studying the idea
from its source,
especially because
Self presents these
ideas in their purest
form.

This infamous
situation is called
diamond
inheritance. If you
choose to include
multiple inheritance
in your language
you can lose
yourself for days in
design decisions on
this. Because it is
highly unlikely you
will find a canonical

http://selflanguage.org/

D objects in the instance of A? Having only one saves space and might interact better
with our expectations, but then, will we visit this object once or twice? Visiting it twice
should not make any difference, so it seems unnecessary. But visiting it once means
the behavior of one of B or C might change. And so on. As a result, virtually every
multiple-inheritance language is accompanied by a subtle algorithm merely to define
the lookup order.

Multiple inheritance is only attractive until you’ve thought it through.

10.3.4 Super-Duper!

Many languages have a notion of super-invocations, i.e., the ability to invoke a method
or access a field higher up in the inheritance chain. This includes doing so at the
point of object construction, where there is often a requirement that all constructors be
invoked, to make sure the object is properly defined.

We have become so accustomed to thinking of these calls as going “up” the chain
that we may have forgotten to ask whether this is the most natural direction. Keep in
mind that constructors and methods are expected to enforce invariants. Whom should
we trust more: the super-class or the sub-class? One argument would say that the
sub-class is most refined, so it has the most global view of the object. Conversely,
each super-class has a vested interest in protecting its invariants against violation by
ignorant sub-classes.

These are two fundamentally opposed views of what inheritance means. Going up
the chain means we view the extension as replacing the parent. Going down the chain
means we view the extension as refining the parent. Because we normally associate
sub-classing with refinement, why do our languages choose the “wrong” order of call-
ing? Some languages have, therefore, explored invocation in the downward direction
by default.

10.3.5 Mixins and Traits

Let’s return to our “blobs”.

When we write a class in Java, what are we really defining between the opening
and closing braces? It is not the entire class: that depends on the parent that it extends,
and so on recursively. Rather, what we define inside the braces is a class extension. It
only becomes a full-blown class because we also identify the parent class in the same
place.

Naturally, we should ask: Why? Why not separate the act of defining an extension
from applying the extension to a base class? That is, suppose instead of

class C extends B { ... }
we instead write:

classext E { ... }
and separately

class C = E(B)

79

Note that I say
“the” and “chain”.
‘When we switch to
multiple
inheritance, these
concepts are
replaced with
something much
more complex.

gbetalis a modern
programming
language that
supports inner, as
well as many other
interesting features.
It is also interesting
to consider
combining both
directions.

http://www.daimi.au.dk/~eernst/gbeta/
http://www.cs.utah.edu/plt/publications/oopsla04-gff.pdf
http://www.cs.utah.edu/plt/publications/oopsla04-gff.pdf

where B is some already-defined class.

Thusfar, it looks like we’ve just gone to great lengths to obtain what we had be-
fore. However, the function-application-like syntax is meant to be suggestive: we can
“apply” this extension to several different base classes. Thus:

class C1
class C2 =

E(B1);
E(B2);

and so on. What we have done by separating the definition of E from that of the class it
extends is to liberate class extensions from the tyranny of the fixed base class. We have
a name for these extensions: they’re called mixins.

Mixins make class definition more compositional. They provide many of the bene-
fits of multiple-inheritance (reusing multiple fragments of functionality) but within the
aegis of a single-inheritance language (i.e., no complicated rules about lookup order).
Observe that when desugaring, it’s actually quite easy to add mixins to the language.
A mixin is primarily a “function over classes’;. Because we have already determined
how to desugar classes, and our target language for desugaring also has functions, and
classes desugar to expressions that can be nested inside functions, it becomes almost
trivial to implement a simple model of mixins.

In a typed language, a good design for mixins can actually improve object-oriented
programming practice. Suppose we’re defining a mixin-based version of Java. If a
mixin is effectively a class-to-class function, what is the “type” of this “function™?
Clearly, mixin ought to use interfaces to describe what it expects and provides. Java
already enables (but does not require) the latter, but it does not enable the former: a
class (extension) extends another class—with all its members visible to the extension—
not its interface. That means it obtains all of the parent’s behavior, not a specification
thereof. In turn, if the parent changes, the class might break.

In a mixin language, we can instead write

mixin M extends I { ... }

where I is an interface. Then M can only be applied to a class that satisfies the interface
I, and in turn the language can ensure that only members specified in I are visible in
M. This follows one of the important principles of good software design.

A good design for mixins can go even further. A class can only be used once in an
inheritance chain, by definition (if a class eventually referred back to itself, there would
be a cycle in the inheritance chain, causing potential infinite loops). In contrast, when
we compose functions, we have no qualms about using the same function twice (e.g.:
(map (filter (map ...)))). Is there value to using a mixin twice?

Mixins solve an important problem that arises in the design of libraries. Suppose
we have a dozen different features which can be combined in different ways. How
many classes should we provide? Furthermore, not all of these can be combined with
each other. It is obviously impractical to generate the entire combinatorial explosion of
classes. It would be better if the devleoper could pick and choose the features they care
about, with some mechanism to prevent unreasonable combinations. This is precisely
the problem that mixins solve: they provide the class extensions, which the developers
can combine, in an interface-preserving way, to create just the classes they need.

Exercise

80

The term “mixin”
originated in
Common Lisp,
where it was a
particular pattern of
using multiple
inheritance.
Lipstick on a pig.

This is a case where
the greater
generality of the
target language of
desugaring can lead
us to a better
construct, if we
reflect it back into
the source
language.

“Program to an
interface, not an
implementation.”
—Design Patterns

There certainly is!
See sections 3 and 4
of \Classes and
Mixins.

Mixins are used
extensively in the
Racket GUI library.
For instance,
color:text-mixin
consumes basic text
editor interfaces
and implements the
colored text editor
interface. The latter
is iself a basic text
editor interface, so
additional basic text
mixins can be

annlied ta the recnllt

http://www.cs.brown.edu/~sk/Publications/Papers/Published/fkf-classes-mixins/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/fkf-classes-mixins/

